go 的所有基础知识,根据自己的情况,不定时添加。更深入的内容会单开文章来写。
go语言基础
GO语言特性
1.不用做内存管理 2.天然支持高并发 3.channel管道 管道最初是unix中的特性,因为进程之间是隔离的,如果两个进程之间需要资源交互;那么就把资源放到管道中。通过管道交互。 4.多返回值
Go 语言的包引入一般为: 项目名/包名
import "test/controllers"
方法的调用为: 包名.方法名()
controllers.Test()
本包内方法名可为小写,包外调用方法名首字母必须为大写。
fmt包
1.Print() 函数将参数列表 a 中的各个参数转换为字符串并写入到标准输出中。
非字符串参数之间会添加空格,返回写入的字节数。
func Print(a ...interface{}) (n int, err error)
2.Println() 函数功能类似 Print,只不过最后会添加一个换行符。
所有参数之间会添加空格,返回写入的字节数。
func Println(a ...interface{}) (n int, err error)
3.Printf() 函数将参数列表 a 填写到格式字符串 format 的占位符中。
填写后的结果写入到标准输出中,返回写入的字节数。
func Printf(format string, a ...interface{}) (n int, err error)
实例:
fmt.Print("a", "b", 1, 2, 3, "c", "d", "\n")
fmt.Println("a", "b", 1, 2, 3, "c", "d")
fmt.Printf("ab %d %d %d cd\n", 1, 2, 3)
fmt.Println("你好")
ab1 2 3cd
a b 1 2 3 c d
ab 1 2 3 cd
你好
条件控制
- 支持多条件匹配
switchswitch{{
casecase 11,,22,,33,,44::
defaultdefault::
}}
不同的 case 之间不使用 break 分隔,默认只会执行一个 case。
如果想要执行多个 case,需要使用 fallthrough 关键字,也可用 break 终止。
switch{
case 1:
...
if(...){
break
}
fallthrough // 此时switch(1)会执行case1和case2,但是如果满足if条件,则只执行case1
case 2:
...
case 3:
}
select 语句
select是Go中的一个控制结构,类似于用于通信的switch语句。每个case必须是一个通信操作,要么是发送要么是接收。
select随机执行一个可运行的case。如果没有case可运行,它将阻塞,直到有case可运行。一个默认的子句应该总是可运行的。
以下描述了 select 语句的语法:
每个case都必须是一个通信 所有channel表达式都会被求值 所有被发送的表达式都会被求值 如果任意某个通信可以进行,它就执行;其他被忽略。 如果有多个case都可以运行,Select会随机公平地选出一个执行。其他不会执行。 否则: 如果有default子句,则执行该语句。 如果没有default字句,select将阻塞,直到某个通信可以运行;Go不会重新对channel或值进行求值。
package main
import "fmt"
func main() {
var c1, c2, c3 chan int
var i1, i2 int
select {
case i1 = <-c1:
fmt.Printf("received ", i1, " from c1\n")
case c2 <- i2:
fmt.Printf("sent ", i2, " to c2\n")
case i3, ok := (<-c3): // same as: i3, ok := <-c3
if ok {
fmt.Printf("received ", i3, " from c3\n")
} else {
fmt.Printf("c3 is closed\n")
}
default:
fmt.Printf("no communication\n")
}
}
函数
func function_name( [parameter list] ) [return_types] {
函数体
}
- func:函数由 func 开始声明
- function_name:函数名称,函数名和参数列表一起构成了函数签名。
- parameter list:参数列表,参数就像一个占位符,当函数被调用时,你可以将值传递给参数,这个值被称为实际参数。参数列表指定的是参数类型、顺序、及参数个数。参数是可选的,也就是说函数也可以不包含参数。
- return_types:返回类型,函数返回一列值。return_types 是该列值的数据类型。有些功能不需要返回值,这种情况下 return_types 不是必须的。
- 函数体:函数定义的代码集合。
实例:
package main
import "fmt"
func main() {
/* 定义局部变量 */
var a int = 100
var b int = 200
var ret int
/* 调用函数并返回最大值 */
ret = max(a, b)
fmt.Printf( "最大值是 : %d\n", ret )
}
/* 函数返回两个数的最大值 */
func max(num1, num2 int) int {
/* 定义局部变量 */
var result int
if (num1 > num2) {
result = num1
} else {
result = num2
}
return result
}
全局变量与局部变量
Go 语言程序中全局变量与局部变量名称可以相同,但是函数内的局部变量会被优先考虑。
package main
import "fmt"
/* 声明全局变量 */
var g int = 20
func main() {
/* 声明局部变量 */
var g int = 10
fmt.Printf ("结果: g = %d\n", g)
}
一个更好的实例:
package main
import "fmt"
/* 声明全局变量 */
var a int = 20
func main() {
/* main 函数中声明局部变量 */
var a int = 10
var b int = 20
var c int = 0
fmt.Printf("main()函数中 a = %d\n", a)
c = sum(a, b)
fmt.Printf("main()函数中 a = %d\n", a)
fmt.Printf("main()函数中 c = %d\n", c)
}
/* 函数定义-两数相加 */
func sum(a, b int) int {
a = a + 1
fmt.Printf("sum() 函数中 a = %d\n", a)
fmt.Printf("sum() 函数中 b = %d\n", b)
return a + b
}
结果:
main()函数中 a = 10
sum() 函数中 a = 11
sum() 函数中 b = 20
main()函数中 a = 10
main()函数中 c = 31
切片
Go 语言切片是对数组的抽象。
Go 数组的长度不可改变,在特定场景中这样的集合就不太适用,Go中提供了一种灵活,功能强悍的内置类型切片(“动态数组”),与数组相比切片的长度是不固定的,可以追加元素,在追加时可能使切片的容量增大。
定义:
var identifier []type
简写: > var slice1 []type = make([]type, len)
也可以简写为
slice1 := make([]type, len)
也可以指定容量,其中capacity为可选参数。 > make([]T, length, capacity)
切片初始化
s :=[] int {1,2,3 } 直接初始化切片,[]表示是切片类型,{1,2,3}初始化值依次是1,2,3.其cap=len=3
s := arr[:] 初始化切片s,是数组arr的引用
s := arr[startIndex:endIndex] 将arr中从下标startIndex到endIndex-1 下的元素创建为一个新的切片
s := arr[startIndex:] 缺省endIndex时将表示一直到arr的最后一个元素
s := arr[:endIndex] 缺省startIndex时将表示从arr的第一个元素开始
s1 := s[startIndex:endIndex] 通过切片s初始化切片s1
s :=make([]int,len,cap) 通过内置函数make()初始化切片s,[]int 标识为其元素类型为int的切片
len() 和 cap() 函数
切片是可索引的,并且可以由 len() 方法获取长度。
切片提供了计算容量的方法 cap() 可以测量切片最长可以达到多少。
实例:
package main
import "fmt"
func main() {
var numbers = make([]int,3,5)
printSlice(numbers)
}
func printSlice(x []int){
fmt.Printf("len=%d cap=%d slice=%v\n",len(x),cap(x),x)
}
结果:
len=3 cap=5 slice=[0 0 0]
切片截取
可以通过设置下限及上限来设置截取切片 [lower-bound:upper-bound],实例如下
package main
import "fmt"
func main() {
/* 创建切片 */
numbers := []int{0,1,2,3,4,5,6,7,8}
printSlice(numbers)
/* 打印原始切片 */
fmt.Println("numbers ==", numbers)
/* 打印子切片从索引1(包含) 到索引4(不包含)*/
fmt.Println("numbers[1:4] ==", numbers[1:4])
/* 默认下限为 0*/
fmt.Println("numbers[:3] ==", numbers[:3])
/* 默认上限为 len(s)*/
fmt.Println("numbers[4:] ==", numbers[4:])
numbers1 := make([]int,0,5)
printSlice(numbers1)
/* 打印子切片从索引 0(包含) 到索引 2(不包含) */
number2 := numbers[:2]
printSlice(number2)
/* 打印子切片从索引 2(包含) 到索引 5(不包含) */
number3 := numbers[2:5]
printSlice(number3)
}
func printSlice(x []int){
fmt.Printf("len=%d cap=%d slice=%v\n",len(x),cap(x),x)
}
结果:
len=9 cap=9 slice=[0 1 2 3 4 5 6 7 8]
numbers == [0 1 2 3 4 5 6 7 8]
numbers[1:4] == [1 2 3]
numbers[:3] == [0 1 2]
numbers[4:] == [4 5 6 7 8]
len=0 cap=5 slice=[]
len=2 cap=9 slice=[0 1]
len=3 cap=7 slice=[2 3 4]
append() 和 copy() 函数
如果想增加切片的容量,我们必须创建一个新的更大的切片并把原分片的内容都拷贝过来。
下面的代码描述了从拷贝切片的 copy 方法和向切片追加新元素的 append 方法。
package main
import "fmt"
func main() {
var numbers []int
printSlice(numbers)
/* 允许追加空切片 */
numbers = append(numbers, 0)
printSlice(numbers)
/* 向切片添加一个元素 */
numbers = append(numbers, 1)
printSlice(numbers)
/* 同时添加多个元素 */
numbers = append(numbers, 2,3,4)
printSlice(numbers)
/* 创建切片 numbers1 是之前切片的两倍容量*/
numbers1 := make([]int, len(numbers), (cap(numbers))*2)
/* 拷贝 numbers 的内容到 numbers1 */
copy(numbers1,numbers)
printSlice(numbers1)
}
func printSlice(x []int){
fmt.Printf("len=%d cap=%d slice=%v\n",len(x),cap(x),x)
}
结果:
len=0 cap=0 slice=[]
len=1 cap=1 slice=[0]
len=2 cap=2 slice=[0 1]
len=5 cap=6 slice=[0 1 2 3 4]
len=5 cap=12 slice=[0 1 2 3 4]
范围Range
Go 语言中 range 关键字用于 for 循环中迭代数组(array)、切片(slice)、通道(channel)或集合(map)的元素。在数组和切片中它返回元素的索引和索引对应的值,在集合中返回 key-value 对的 key 值。
map
Map 是一种无序的键值对的集合。Map 最重要的一点是通过 key 来快速检索数据,key 类似于索引,指向数据的值。
Map 是一种集合,所以我们可以像迭代数组和切片那样迭代它。不过,Map 是无序的,我们无法决定它的返回顺序,这是因为 Map 是使用 hash 表来实现的。
/* 声明变量,默认 map 是 nil */ > var map_variable map[key_data_type]value_data_type
/* 使用 make 函数 */ > map_variable := make(map[key_data_type]value_data_type)
如果不初始化 map,那么就会创建一个 nil map。nil map 不能用来存放键值对
实例:
package main
import "fmt"
func main() {
var countryCapitalMap map[string]string /*创建集合 */
countryCapitalMap = make(map[string]string)
/* map插入key - value对,各个国家对应的首都 */
countryCapitalMap [ "France" ] = "Paris"
countryCapitalMap [ "Italy" ] = "罗马"
countryCapitalMap [ "Japan" ] = "东京"
countryCapitalMap [ "India " ] = "新德里"
/*使用键输出地图值 */ for country := range countryCapitalMap {
fmt.Println(country, "首都是", countryCapitalMap [country])
}
/*查看元素在集合中是否存在 */
captial, ok := countryCapitalMap [ "美国" ] /*如果确定是真实的,则存在,否则不存在 */
/*fmt.Println(captial) */
/*fmt.Println(ok) */
if (ok) {
fmt.Println("美国的首都是", captial)
} else {
fmt.Println("美国的首都不存在")
}
}
结果:
France 首都是 Paris
Italy 首都是 罗马
Japan 首都是 东京
India 首都是 新德里
美国的首都不存在
delete() 函数
package main
import "fmt"
func main() {
/* 创建map */
countryCapitalMap := map[string]string{"France": "Paris", "Italy": "Rome", "Japan": "Tokyo", "India": "New delhi"}
fmt.Println("原始地图")
/* 打印地图 */
for country := range countryCapitalMap {
fmt.Println(country, "首都是", countryCapitalMap [ country ])
}
/*删除元素*/ delete(countryCapitalMap, "France")
fmt.Println("法国条目被删除")
fmt.Println("删除元素后地图")
/*打印地图*/
for country := range countryCapitalMap {
fmt.Println(country, "首都是", countryCapitalMap [ country ])
}
}
结果:
原始地图
India 首都是 New delhi
France 首都是 Paris
Italy 首都是 Rome
Japan 首都是 Tokyo
法国条目被删除
删除元素后地图
Italy 首都是 Rome
Japan 首都是 Tokyo
India 首都是 New delhi
递归函数
func recursion() {
recursion() /* 函数调用自身 */
}
func main() {
recursion()
}
Go 语言支持递归。但我们在使用递归时,开发者需要设置退出条件,否则递归将陷入无限循环中。
递归函数对于解决数学上的问题是非常有用的,就像计算阶乘,生成斐波那契数列等
package main
import "fmt"
func fibonacci(n int) int {
if n < 2 {
return n
}
return fibonacci(n-2) + fibonacci(n-1)
}
func main() {
var i int
for i = 0; i < 10; i++ {
fmt.Printf("%d\t", fibonacci(i))
}
}
结果:
0 1 1 2 3 5 8 13 21 34
类型转换
type_name(expression)
type_name 为类型,expression 为表达式。
package main
import "fmt"
func main() {
var sum int = 17
var count int = 5
var mean float32
mean = float32(sum)/float32(count)
fmt.Printf("mean 的值为: %f\n",mean)
}
结果:
mean 的值为: 3.400000
接口
Go 语言提供了另外一种数据类型即接口,它把所有的具有共性的方法定义在一起,任何其他类型只要实现了这些方法就是实现了这个接口。
表达:
/* 定义接口 */
type interface_name interface {
method_name1 [return_type]
method_name2 [return_type]
method_name3 [return_type]
...
method_namen [return_type]
}
/* 定义结构体 */
type struct_name struct {
/* variables */
}
/* 实现接口方法 */
func (struct_name_variable struct_name) method_name1() [return_type] {
/* 方法实现 */
}
...
func (struct_name_variable struct_name) method_namen() [return_type] {
/* 方法实现*/
}
实例:
package main
import (
"fmt"
)
type Phone interface {
call()
}
type NokiaPhone struct {
}
func (nokiaPhone NokiaPhone) call() {
fmt.Println("I am Nokia, I can call you!")
}
type IPhone struct {
}
func (iPhone IPhone) call() {
fmt.Println("I am iPhone, I can call you!")
}
func main() {
var phone Phone
phone = new(NokiaPhone)
phone.call()
phone = new(IPhone)
phone.call()
}
在上面的例子中,我们定义了一个接口Phone,接口里面有一个方法call()。然后我们在main函数里面定义了一个Phone类型变量,并分别为之赋值为NokiaPhone和IPhone。然后调用call()方法,输出结果如下:
I am Nokia, I can call you!
I am iPhone, I can call you!
错误处理
type error interface {
Error() string
}
这是定义。
package main
import (
"fmt"
)
// 定义一个 DivideError 结构
type DivideError struct {
dividee int
divider int
}
// 实现 `error` 接口
func (de *DivideError) Error() string {
strFormat := `
Cannot proceed, the divider is zero.
dividee: %d
divider: 0
`
return fmt.Sprintf(strFormat, de.dividee)
}
// 定义 `int` 类型除法运算的函数
func Divide(varDividee int, varDivider int) (result int, errorMsg string) {
if varDivider == 0 {
dData := DivideError{
dividee: varDividee,
divider: varDivider,
}
errorMsg = dData.Error()
return
} else {
return varDividee / varDivider, ""
}
}
func main() {
// 正常情况
if result, errorMsg := Divide(100, 10); errorMsg == "" {
fmt.Println("100/10 = ", result)
}
// 当被除数为零的时候会返回错误信息
if _, errorMsg := Divide(100, 0); errorMsg != "" {
fmt.Println("errorMsg is: ", errorMsg)
}
}
结果:
100/10 = 10
errorMsg is:
Cannot proceed, the divider is zero.
dividee: 100
divider: 0